Senior

Math 8,9,10 review

Calculators may not be used during the review unit.

This booklet belongs to:_____

LESSON #	DATE	QUESTIONS FROM NOTES	Questions that I find difficult
1		Pg.	
2		Pg.	
3		Pg.	
		TES	Т

Your teacher has important instructions for you to write down below.

Math 8,9,10 Review Pre-Test

This pretest covers concepts that this course expects that you have mastered. We will use the next few days to ensure you are up to speed with this material.

Instructions:

- 1. Complete this practice test by yourself.
- 2. After you have done all you can mark it, using the key at the bottom of this page.
- 3. Star every question that you would like some reminders on.
- 4. Correct all of your mistakes using your peers or by reading this workbook.

BEDMAS: As a senior student your mastery of order of operations is expected.

Challenge #1: Evaluate: 5 - 3(4 - 3 × 2)2

Challenge #2: Evaluate: $3 + 5((5 - 3) \times 3^2)$

BEDMAS review.

1. Evaluate. 5 – 3(4 – 3 × 2)²	2. Evaluate. 3+5((5−3)×3²)
Brackets first. Multiply before subtracting. $5 - 3(4 - 6)^2$ Subtract inside the brackets only. $5 - 3(-2)^2$ Exponents. $5 - 3 \times 4$	Complete the brackets inside the brackets first. $3 + 5((2) \times 3^2)$ Exponents. $3 + 5((2) \times 9)$ Multiply inside the brackets. 3 + 5(18)
Multiply. 5 - 12 Subtract. -7	Multiply. 3 + 90 Add. 93

Evaluate.

3.	$3 \times 2 - 5(4 - 3 \times 2)^3 + 1$	4. $2-2(-4-3\times 2)^2(2)$	5.	$8 \div (2-4)(9-5 \times 2)^3 + 1$
	47	-398		5

Evaluate.

6.
$$-5 \times 2 - 4(2 - 3 \times 2)^2 - 4$$

7. $5 - 2(-(-4 + 3) \times 2)^2 \times 10$
8. $12 \div (6 - 4)(-9 + 5 \times 2)^3 - 100$
-78 -75 -94

Fractions: Senior math courses require you to calculate complex fraction questions without a calculator.

Challenge #3: $3\frac{1}{2} + \frac{6}{7}$ Challenge #4: $3\frac{1}{2} - \frac{6}{7}$ Challenge #5: $3\frac{1}{2} \times \frac{6}{7}$ Challenge #6: $3\frac{1}{2} \div \frac{6}{7}$

See the next page for solutions.

Copyright Mathbeacon2008-2011. License Agreement Per student/Per Year: This content may be used before but not after July 2012.

4

Fraction Rules

	Addition	Subtraction	Multiplication	Division	
	13. $3\frac{1}{2} + \frac{6}{7}$	14. $3\frac{1}{2}-\frac{6}{7}$	15. $3\frac{1}{2} \times \frac{6}{7}$	16. $3\frac{1}{2} \div \frac{6}{7}$	
Step 1		Conver	t mixed number to improper fractions). 	
	$\frac{7}{2} + \frac{6}{7}$	$\frac{7}{2} - \frac{6}{7}$	$\frac{7}{2} \times \frac{6}{7}$	$\frac{7}{2} \div \frac{6}{7}$	
Step 2	Create equivalent f common denominat	ractions with ors.	Numerator times numerator and denominator times denominator.	Multiply the first fraction by the reciprocal of the second fraction.	
	$\frac{7\times7}{2\times7}+\frac{6\times2}{7\times2}$	$\frac{7\times7}{2\times7} - \frac{6\times2}{7\times2}$	$\frac{7 \times 6}{2 \times 7}$	$\frac{7}{2} \times \frac{7}{6}$	
	$2 \times 7 7 \times 2$ = $\frac{49}{14} + \frac{12}{14}$	$=\frac{49}{14}-\frac{12}{14}$	2 × 1	2 0	
Step 3	Add numerators.	Subtract numerators.	Reduce numerator and denominator.	Reduce numerator and denominator.	
	<u>61</u> 14	<u>37</u> 14	$\frac{\chi \times 6}{2 \times \chi} = \frac{6}{2} = 3$	<u>49</u> 12	
17. Evaluate. $-\frac{15}{10} \times \frac{-25}{-20} =$		18. Evaluate. $-\frac{25}{24} \times \frac{36}{30} =$	19. Evaluate. $\left(\frac{5}{4}\right)^2 \div \frac{5}{8} =$	20. Evaluate. $-\frac{9}{4} \div 1\frac{1}{2} =$	
Evaluate 21. Evalua $\left(\frac{9}{2}\right)^2$	$\frac{-15}{8}$ e. ate. $\div 3\frac{3}{2} = \frac{9}{2}$	22. Evaluate. $\frac{-2}{5}\left(\frac{7}{2}-\frac{6}{4}\right) =$ $-\frac{4}{5}$	$ \begin{array}{c} -\frac{5}{4} \\ 23. \text{ Evaluate.} \\ -3 + \frac{10}{6} \times \frac{8}{12} = \\ -\frac{17}{9} \end{array} $	$\frac{5}{2} \qquad -\frac{3}{2}$ 24. Evaluate. $\left(\frac{5}{3}\right)^2 - \frac{12}{20} =$ $\frac{98}{45}$	

Write down the common error that people make on this problem?

Challenge #11: Factor 2x + 6

Challenge #12: Factor $x^3 + 3x^2$

What does factor mean?

Remember factoring is the opposite of expanding.

53. Factor m ² + 8m + 12.	54. Example 1	55. Example 2	56. Example 3
Solution:	Factor m ² + 9m + 14.	Factor a ² – 8a + 12.	Factor m ² – 5mn – 14n ² .
 Find 2 numbers that multiply to 12 and add to 8. 6 2 12 	×	×	×
+ 8 =(m+2)(m+6)	=()()	=()()	=()()

Factor.		
57. x ² - 46x + 45 =	58. x ² - 9x - 36 =	59. x ² + 6x - 16 =
60. b ² - 5ab - 24a ² =	61. g ² + 11gh - 12h ² =	62. w ² - 7wx - 44x ² =
63. 2x ² + 12 x + 10 =	64. 5x ² + 25 x + 30 =	6510x ² + 20x + 150 =

Challenge #17: Factor $6M^2$ -7M-5 three different ways.

Factor.

Arrange in Descending powers of "M"	66. START			67. START				
	-	7M-5+6/	M ²	-15	-15 M ² -25M+10M ³			
	\downarrow			\downarrow				
Remove GCF								
	e	M ² -7M-	-5	10/	M ³ -15 M ² -	25M		
		\downarrow			\downarrow			
		2 7	F	F				
		•//\ - / /\\- 	·9	5	N(<i>∠N</i> ∖-3N	(-5)		
		¥	6x(-5)		¥	2×(-5)		
Use Table			1 ^{s⊤} x Last			1 st x Last		
]]		
Remember we need to find 2 #s that:	-10	3	-30	-5	2	-10		
•Multiply to the 1 st # times the last #			1X30	2		1×10		
	3		2X15	2		2x5		
 and adds to the middle # 			21/10					
	+ -/		3X10	-3				
			5X6					
	Ado	ls to Mi	ddle	Adds to Middle				
Fill the Brackets	()()	5M()()		
		\downarrow			\downarrow			
•Fill brackets with M ² Coefficient and M	(6M)(6/	Λ)	5M(2M)(2M)		M)		
	\downarrow			\downarrow				
 Fill Brackets and #s from Table 	(6M-10)(6M+3)		5M(2M-5)(2M+2)		(M+2)			
Divide out common Factors								
	(<u>6M-10</u>)(<u>6M+3</u>)		5M(2 <u>M-5</u>)(2 <u>M+2</u>)		<u>M+2</u>)			
	2		3		2	2		
You are done©	(3	3M-5)(2M	+1)	5N	(2M-5)(M+1)		
						•		

(x+1)(2x+1)

68. Factor $2x^2 + 3x + 1 =$ 69. Factor $2x^2 + 11x + 5 =$ 70. Factor $3x^2 + 16x + 5 =$

71. Factor 6x² + 17x + 5 = 72. Factor 10x² - 101x + 10 = 73. Factor -4x² - 11x - 6 =

Factoring a Difference of Squares: $x^2 - y^2$

Challenge #18: Factor m² - 4.

Challenge #19: Factor x⁴ - 16.

Can x^2 + 4 be factored?

80. Factor
$$x^4 - 16$$

Solution:
Since $x^4 \& 16$ are perfect squares
factor the difference of square.
 $(x^2+4)(x^2-4)$
 (x^2+4) Are there two numbers that
add to 0 and multiply to 4? No.
 (x^2-4) Are there two numbers that
add to 0 and multiply to -4? Yes.
 $(x^2+4)(x+2)(x-2)$
Challenge #20: Simplify $\frac{x^2 + 6x + 8}{x+2}$.
Challenge #21: Simplify $\frac{5x^3 + 10x^2 + 5x}{10x^2 + 50x}$

$$\frac{\left(x+1\right)^2}{2x+10} \operatorname{or} \frac{\left(x+1\right)^2}{2\left(x+5\right)}$$

What does simplify mean?

83. Simplify. $\frac{x^2 + 6x + 8}{x + 2}$	84. Simplify. $\frac{x^2 + 6x + 5}{x + 5}$	85. Simplify. $\frac{x^2 + 8x + 15}{x + 5}$	86. Simplify. $\frac{x^3 + 2x^2 + 1x}{x^2 + x}$
Solution: Factor the			
top and reduce.	1 1 1 1	1 1 1 1	
$\frac{(x+4)(x+2)}{2}$			
$\frac{(x+2)}{(x+4)(x+2)}$			
X = 2			
x+4	1 1 1 1		

Challenge #23: Solve
$$\frac{3}{4}(m-1) + 4 = 6$$

<u>11</u> 3

The rules to solve any equation:

- Eliminate <u>Fractions</u> by multiplying both sides by the common denominator.
- Eliminate brackets by Expanding.
- Collect Like Terms on each side of the equal sign.
- Get variables to same side by <u>Subtracting or Adding</u> variables to each side.
- Get constants to same side by <u>Subtracting or Adding</u> constants to each side.
- Isolate the variable by <u>Dividing</u> both sides by the coefficient.

The acronym is FELTSAD*. Some people have felt sad until they figure out how to solve the equation. *(Apply from left to right. The F and E can be applied in any order. The S and A can be applied in any order). Here is an example of this.

	$2\left(m-1\right)+\frac{5m}{2}=\frac{2}{3}\left(m+3\right)$	This is a very difficult question. You will be able to do this at the end of this unit.
F	$\left[2\left(m-1\right)+\frac{5m}{2}=\frac{2}{3}\left(m+3\right)\right]\times 6$	Fractions. Multiply each side by 6.
E	$12(m-1) + \frac{30m}{2} = \frac{12}{3}(m+3)$ $12(m-1) + 15m = 4(m+3)$	Expand. Eliminate the brackets.
LT	12m - 12 + 15m = 4m + 12	Like Terms. Collect like terms on the left side.
S	27m - 12 = 4m + 12	Subtract. Subtract 4m from both sides.
A	23m - 12 = 12	Add. Add 12 to both sides.
D	23 <i>m</i> = 24	Divide. Divide both sides by 23.
	$m=\frac{24}{23}$	Check your answer. This answer would be best checked with a calculator.

0

14

Challenge #24: Solve for m. A(M+N)=AB

Write down the steps to solve this problem.

Write your answer in two equivalent forms.

Solve for M.			
96. A(M+N)=AB	97. 5 M+2N=6B	98. 2A(M-N)=8	99. 4N(A+M)=10
100. A(N-M)=AB	101. 5M-2N=6B	1022 A(M-N)=8	103. 8N(M + A)=20
Challenge #25: Simplify	<u>√12</u>	Challenge #26: Simplify	$\sqrt{75} + \sqrt{12}$

			What	t are th	e first	12 perf	ect squ	Jares?			
1	4										144
Simpl 104. $\sqrt{1}$. Think \rightarrow V perfect into 12? $= \sqrt{4}\sqrt{1}$ $= 2\sqrt{3}$	ify the 2 What is the square tha 3	follow e biggest t goes	ing radic 105. √4	cals.		106. √7	5		107. √2	7	
$108. \sqrt{1}$ Solution like radid = $$ = 2 Since th add coef = 7	$\frac{2}{2} + \sqrt{75}$ Radicals r cals to add $\frac{4 \times 3}{4 \times 3} + \sqrt{3} + 5\sqrt{3}$ ese are like ficients.	nust be 5×3 e radicals	109. 5√ ,	 12 + 2√7	5	110. √2	4 – 5√6		111. –3	√20 <i>–</i> √4	
112. √7 = 5 = 2	75 × √32 5√3 × 4√ 20√6	2	113. √2	$\overline{4} \times \sqrt{3}$		114. √10	0 × √20		115. √2	<u>14</u> × √27	
Simpl	ify the = $\frac{5\pm10}{5}$	follow / <u>3</u>	ing.	$=\frac{5\pm10\sqrt{10}}{10}$	3	118. <i>x</i> =	$=\frac{-5\pm10}{5}$	0√3	119. <i>X</i>	$=\frac{5\pm\sqrt{25}}{5}$	5
1+2√3	_ 3 &1 – 2√	3									

The Exponent Laws

Exponent Laws		Why do they work?	
$m^x \times m^y = m^{x+y}$	$m^6 \times m^3$	(mmmmmm)(mmm)	m ⁹
$m^{\chi} \div m^{\gamma} = m^{\chi-\gamma}$	$m^6 \div m^3$	mmmmmm mmm	m³
$\left(m^{x}\right)^{y}=m^{xy}$	$\left(m^{5}\right)^{3} =$	$\binom{m^5}{m^5}m^5=$	m ¹⁵
$(mn)^{x} = m^{x}n^{x}$	$(mn)^3 =$	(<i>mn</i>)(<i>mn</i>)(<i>mn</i>)=	m ³ n ³
$\left(\frac{m}{n}\right)^{x} = \frac{m^{x}}{n^{x}}$	$\left(\frac{m}{n}\right)^3 =$	$\left(\frac{m}{n}\right)\left(\frac{m}{n}\right)\left(\frac{m}{n}\right) =$	<u>m³</u> n³
$m^{\circ}=1$	5 [°] =1		
$m^{-x} = \frac{1}{m^x}$	$m^{-3} = \frac{1}{m^3}$		
$\left(\frac{m}{n}\right)^{-x} = \frac{n^{x}}{m^{x}}$	$\left(\frac{n}{m}\right)^{-2} = \frac{m^2}{n^2}$		

Simplify and write without brackets.

Pretest answers.

194	2. $-\frac{4}{5}$	3. $\frac{4b+5a}{ab}$	$4. \frac{2xm^3 + x^2}{m}$	5. (2x+1)(x+5)	6. X+1	7. <u>16</u> 5	8. –9√5	9. $\frac{2m^7}{3}$
-----	-------------------	-----------------------	-----------------------------	----------------	--------	-------------------	---------	---------------------

Workbook Answers.

1.	2.	3.	4.	5.	6.
7.	8.	9.	10.	11.	12.
13.	14.	15.	16.	17.	18.
19.	20.	21.	22.	23.	24.
$25. \frac{3a+2b}{6}$	26. $\frac{5m-4n}{20}$	27. $\frac{3a-b}{9}$			$28. \frac{an+bm}{mn}$
$29. \frac{a+bm}{m^2}$	$30. \frac{m^2 + n^3}{mn}$	$31. \frac{am^2 + bn}{m^3 n}$	$32. \frac{4b+5a}{ab}$	33. a²-a-2	34. b ² +9b+20
35. c ² -14c+33	36. d ² +15d+50	37. x ² -10x+25	38. x ² +2x+1	39. x ² -25y ²	40. 9x ² -100y ²
41. 2(x+3)	42. x ² (x+3)	433y(2-y+y ²)	44. w(3w+4)	45. 2x ³ y ² z ³ (x ² z- 2y ⁹)	46. $7^2(x^2+3+2x^4)$
47. $\frac{2x^2+4}{3x}$	48. $\frac{5x+x^2}{6}$	49. $\frac{-3x+x^2}{4}$	$50. \frac{10x^3m + 2x}{5xm}$	51. $\frac{2xm^3 + x^2}{m}$	52. $\frac{-3xm^3+6x^2m}{2}$
53. (m+2)(m+6)	54. (m+2)(m+7)				
55. (a-2)(a-6)	56. (m-7n)(m+2n)	57. (x-45)(x-1)	58. (x-12)(x+3)	59. (x+8)(x-2)	60. (b-8a)(b+3a)
61. (g+12h)(g-h)	62. (w-11x) (w+4x)	63. 2(x+5)(x+1)	64. 5(x+3)(x+2)	6510(x- 5)(x+3)	
		66.	67.	68.	69. (2x+1)(x+5)
70. (3x+1)(x+5)	71. (3x+1)(2x+5)	72. (x-10)(10x-1)	73(4x+3)(x+2)		
	74. (x+2)(x-2)	75. (x-10)(x+10)	76. (x-y)(x+y)	77. (2x-y)(2x+y)	78. (3x-4y)(3x+4y)
79.	80.	81.	82.	83. x+4	84. x+1
9(3x-	(x+2)(x-	$(x-y)(x+y)(x^{2}+y^{2})$	(3-y)(3+y)(9+y ²)		
4y)(3x+4y)	2)(x+4)				
85. x+3	86. x+1		87.	88.	89.
	90.		91.	92.	93.
94.	95.		96. B-N	$97. \frac{6B-2N}{5}$	98. $\frac{4}{A} + N$
99. $\frac{5}{2N} - A$	100. N - B	101. $\frac{6B+2N}{5}$	102. $\frac{-4}{A} + N$	103. $\frac{5}{2N} - A$	104. 2√3
105. 2√10	106. 5√3		107. 3√3	108. 7√3	109. 20√3
110. –3√6		1119√5	112. 20√6	113. 6√2	114. 10√2
	115. 18√2	116. $1 \pm 2\sqrt{3}$	117. $\frac{1\pm 2\sqrt{3}}{2}$	118. $-1 \pm 2\sqrt{3}$	119. 0 or 2
120. 10m ¹¹	121. 12m ¹¹	122. 3m⁴	123. m⁴	124. m ¹³	125. m⁴
126. M ⁷	127. m ⁹	128. m ¹¹	129. m ²⁵	130. $\frac{2m^7}{3}$	