HW Mark: 10 9 8 7 6 RE-Submit

Systems of Linear Equations

This booklet belongs to:_____Period____

LESSON #	DATE	QUESTIONS FROM NOTES	Questions that I find difficult
		Pg.	
		REVIEW	
		TEST	

Your teacher has important instructions for you to write down below.

Page 1 | Linear Systems

June18

www.mathbeacon.com

a .	C T .	D
Systems	of Linear	Equations

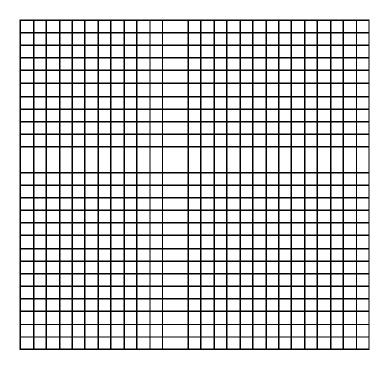
STRAND		DAILY TOPIC	EXAMPLE
Relations &			
Functions			
С9.	9.1	Model a situation, using a system of linear equations.	
0.5.			
Solve problems that			
involve systems of	9.2	Relate a system of linear equations to the context of a problem.	
linear equations in			
two variables, graphically and			
algebraically	9.3	Determine and verify the solution of a system of linear equations	
0		graphically, with and without technology.	
	9.4	Explain the meaning of a point of intersection of a system of	
		linear equations.	
	9.5	Determine and verify the solution of a system of linear equations	
		algebraically.	
	9.6	<u>.</u>	
	9.6	Explain, using examples, why a system of equations may have no solution, one solution or an infinite number of solutions.	
	9.7	Explain a strategy to solve a system of linear equations.	
	9.8	Solve a problem that involves a system of linear equations.	[]]
		Solving [CN] Connections [B] Reasoning [MF] Mental Mathematics	

[C] Communication [PS] Problem Solving, [CN] Connections [R] Reasoning, [ME] Mental Mathematics [T] Technology, and Estimation, [V] Visualization

	Key Terms	
Term	Definition	Example
linear equation		
system of linear		
equations		
solution to a system		
point of intersection		
infinite solutions	<u> </u> 	
one solution		
no solutions		
consistent		
inconsistent		
parallel		
perpendicular		

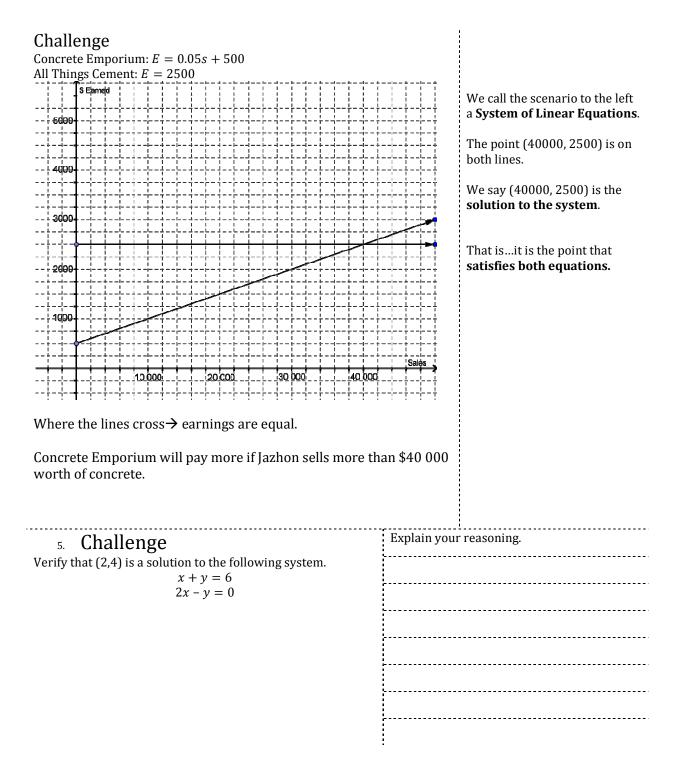
June18

Introduction: Systems of Linear Equations


Challenge

Jazhon is considering two job offers. Concrete Emporium will pay Jazhon a base monthly salary of \$500 plus a commission rate of 5% on all sales each month. All Things Cement offers him a job that pays straight salary, \$2500 per month.

Jazhon wants to consider the two jobs mathematically before he makes his decision. He writes the following equations to represent each job offer.


Concrete Emporium: E = 0.05s + 500All Things Cement: E = 2500

- 1. What does Jazhon need to consider before he can make an educated decision?
- 2. Graph the two equations on the grid below.

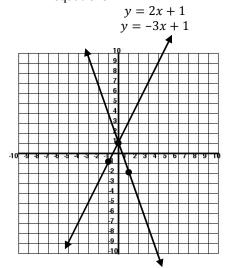
- 3. What is the significance of the point where the two lines cross?
- 4. When does the job offered by Concrete Emporium pay more?

June18

Page 5 | Linear Systems

June18

Determine if the given point is a s	solution to the system of equations	s. Show your work.
6. Is (1,3) a solution to the following system? y = -2x + 5 $y = x + 2$	7. Is (-1,1) a solution to the following system? 5x + 6y = 1 6x + 2y = -3	8. Is (2,1) a solution to the following system? x + 2y = 4 x - y = 1
9. Is (3,3) a solution to the following system? 3y = x + 6 3y = -4x + 21	10. Is (1,2) a solution to the following system? 2x + 2y = 6 y = 4x - 2	11. Is (-1,1) a solution to the following system? 7x = 3y + 10 6x + 5y = -1

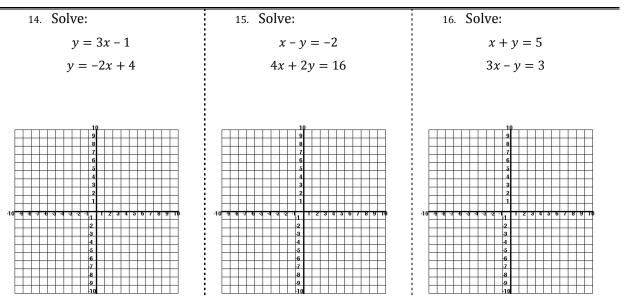

Determine if the given point is a solution to the system of equations. Show your work.

12. Explain how you can determine if a given point is the solution to a system of linear equations.

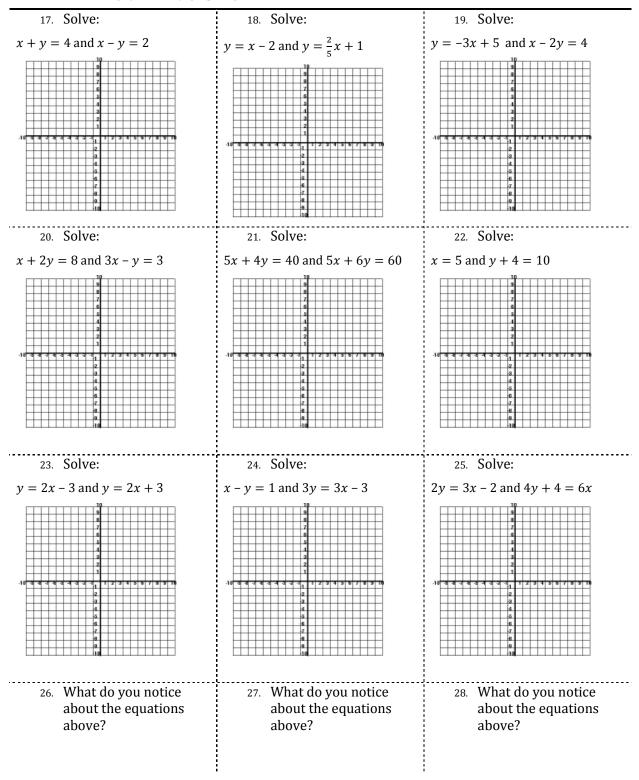
..... Challenge 13. Find the solution to the following system of Explain your steps and/or thinking. equations. y = 2x + 1..... y = -3x + 1----------_____ -----1 2 4 -5 _____ 6 -7 -----

P a g e 6 | Linear Systems

Find the solution to the following system of equations.

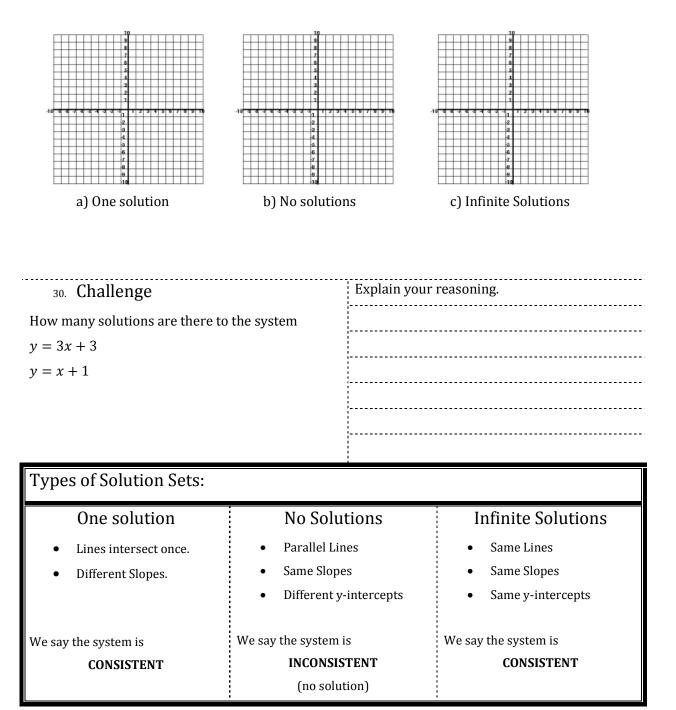

Explain your steps and/or thinking.

I graphed each of the lines.


I found the coordinates of the point that is on both lines → where the lines cross!

(0,1)

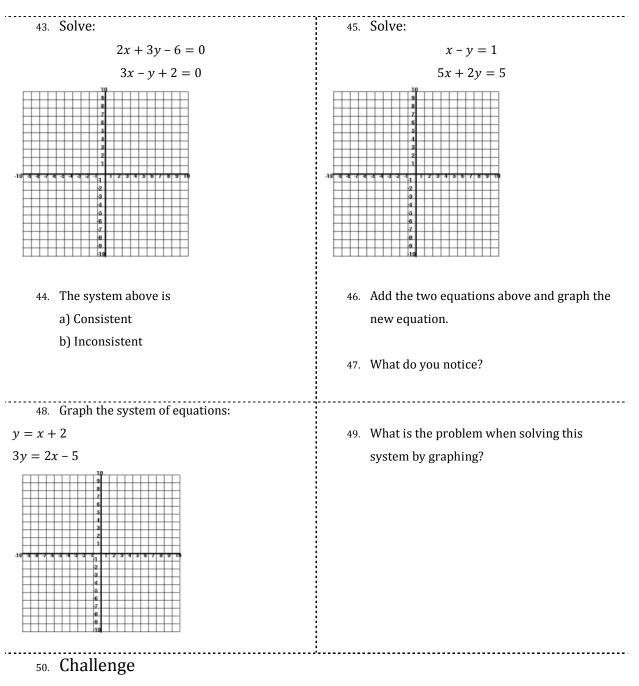
Solve the following systems by graphing:


Solve the following systems by graphing:

June18

29. Challenge

On the three graphs below, draw a system of linear equations with ...

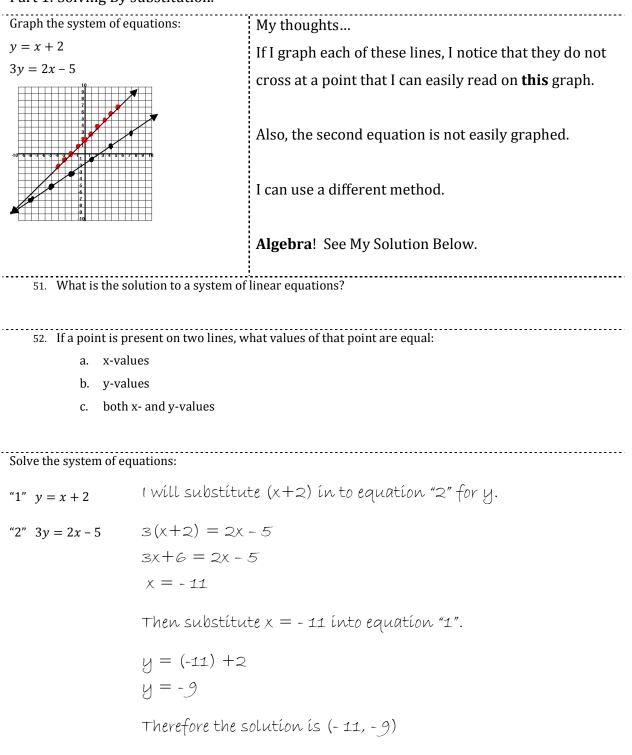

P a g e 9 | Linear Systems

June18

Determine i	f the following system	ns have one	e solution, no solutions	s, or infinite	solutions.
31.	y = 3x + 3	32.	y = 2x + 5	33.	3y = 9x + 12
	y = x + 1		y = 3x - 5		3x - 9y = 12
One solut	tion because				
the slope	s are different.				
Lines wil	l intersect once.				
34.	6x + 4y = 1	35.	2x + y = 5	36.	$y = \frac{2}{3}x + 5$
	3x - 2y = 4		y = -2x - 5		3y = 2x - 5
					3y - 2x - 3
Find the val	ue of <i>k</i> that makes ea	ch system i	nconsistent.		
37.		38.		39.	
У	y = kx - 3		2y = kx + 1		4kx = y - 2
23	v = 2x + 6		2x - y = 7	5 <i>x</i>	+3y - 12 = 0
P ¹					
Find the val	ue of <i>b</i> that will prod	uce a system	n with infinite soluti	ons.	
40.	·	41.		42.	
	y = x - b		3x - y = 7	1	+3y - 2b = 0
23	y=2x-4	4	by = 12x + b	J	$v = -\frac{2}{3}x + 1$
					-

Determine if the following systems have one solution, no solutions, or infinite solutions.

Page 10 | Linear Systems



Solve the system of linear equations: y = x + 2 and 3y = 2x - 5.

Page 11 | Linear Systems

Solving Systems of Equations (without graphing)

Part 1: Solving By substitution.

Page 12 | Linear Systems

June18

53. Solve the following system of equation without graphing, consider the answers to the previous questions to guide you.

$$y = 2x - 1$$
$$y = -x + 1$$

54. Verify your solution above.

June18

Solve the following systems of equations by substitution.

55. Solve. 56. How can I check the solution to the left? y = 2x - 1y = -x + 1Since both (2x - 1) and (-x + 1) are equal to 'y', then they must be equal to each other. 57. Check the solution to the left. 2x - 1 = -x + 13x = 2 $x = \frac{2}{3}$ To find 'y', substitute your known 'x' into either equation. $y = -\left(\frac{2}{3}\right) + 1$ $y = \frac{1}{3}$ Solution $\left(\frac{2}{3}, \frac{1}{3}\right)$ 58. Solve. 59. Solve. 3x + y = 1a + c = 92x + 3y = 112a + c = 11-----60. Solve. 61. Solve. 3x - 4y = -15d + e = 13d - e = 115x + y = -2

Page 14 | Linear Systems

June18

Solve the following systems of equations by substitution.

62. Solve.	63. Solve.
a + 6b = 9	2t - w = 13
3a - 2b = -23	4t + 3w = 1
64. Solve.	65. Solve.
3y = -6x + 15	$y = \frac{x}{3} + 2$
5y = 5x + 10	3y + 4x = 21
66. Solve.	67. Solve.
3x - 2y = 4	i de la constante de
3x + 4y = 10	$\frac{1}{4}x + \frac{1}{2}y = 10$
5x + 1y = 10	$\frac{1}{4}x - \frac{1}{2}y = 0$
	$4^{x} 2^{y} = 0$
	:

www.mathbeacon.ca	June18	www.mathbeacon.com
 68. Write a system of 2 linear equations for the following problem. The sum of two numbers is 65. The first number is 17 greater than the second. 		9. Find the numbers in the problem to the left.
 70. Write a system of 2 linear equations for the following problem. One number is 12 less than another number. Their sum is 102. 	e 7:	. Find the numbers in the problem to the left.
 72. Write a system of 2 linear equations for the following problem. Mr. J bought a total of 12 pairs of socks. Athletic socks cost \$5 per pair and dress socks cost \$7 per pair. He spent \$70 in tota 		8. How many pairs of each type of socks did he buy?

Page 16 | Linear Systems

Part 2: Solving By Elimination (Addition or Subtraction)

Challenge Questions

- 74. Is (3,1) a solution to the system 2x y = 5 and 2x 4y = 2?
- 75. Multiply each of the equations above by 2. $2(2x - y = 5) \rightarrow 2(2x - 4y = 2) \rightarrow 2(2x - 4$
- 76. Is (3,1) still a solution to each of the equations above?
- 77. Add the two original equations together: 2x - y = 52x - 4y = 2
- 78. Is (3,1) a solution to the new equation?
- 79. What conclusions can you draw about adding/subtracting equations together?
- 80. What conclusions can you draw about multiplying equations in a system by a constant?
- 81. Can you multiply the equations by different numbers without affecting the solution?

Page 17 | Linear Systems

82. Graph equation :

① 2x + y = 8

83. Graph equation O:

② y = 4x - 4

84. Add equations ① and ②. Call this equation ③.

3_____

- 85. Graph equation \Im .
- 86. Multiply $\Im \times 3$ and call this equation \oplus .

- 87. Graph equation ④.
- 88. Add 3and 4, call this equation 5.

5

89. Graph equation (5).

90. Describe what you see happening above.

_									%1	0									
L		1							9		8				8				<u> </u>
							_		8						3				
	- 3			8-			_	;:	7		3i:				31				35
Ļ	$ \rightarrow $			_		_	$ \rightarrow $	_	6										
1		_							5										
Ļ	_					_	$ \rightarrow $		4										
	- 1			8-			_	;	3		SK		- 3		3				35
Ļ	$ \rightarrow $	_		_		_		_	2										_
	_	_	_				_		1										<u>.</u>
-10	-9	-8	-/	-6	-5	-4	-3	-2	-		z	3	4	5	6	7	8	9	Т
			- 1	8 ° 7	100		1	<u>п</u>	11	•	~	~	· · ·	~	· ~ 1	· •	~		- T
F			-	800					-1		-	Ŭ			Ĩ	Ċ	-		3
									-1		-	Ū					-		8 6
							_		-1 -2 -3			-							
-									-1 -2 -3 -4		L								
									-1 -2 -3										
									-1 -2 -3 -4 -5										
-									-1 -2 -3 -4 -5 -6										
-									-1 -2 -3 -4 -5 -6 -7										

P a g e 18 | Linear Systems

June18

91. Write a set of rules describing what you may do to a system of equations in order to find the solution. That is, how can you manipulate the equations without affecting the solution?

92. Add the two	equations together, then solve.	93. Solve.
3x - 6y = 21		2x + 3y = 18
-3x - 4y = -1		2x - 3y = -6
-10y = 20		
y = - 2 →	3x - 6(-2) = 21	
	3x + 12 = 21	
	3x = 9	
	x = 3	
Solution: (3, - 2)		
94. Solve.		95. Solve.
8x + 2y = -20		-4t + 3s = 2
2x - 2y = -30		8t - 6s = -4
96. Solve.		97. Solve.
6x - 3y = 24		3b - a = 1
x + y = -2		-12b + 4a = -4
		:

Page 19 | Linear Systems

www.mathbeacon.ca	June18	www.mathbeacon.com
98. Solve. 0.05x + 0.07y = 19 x + y = 300	99. Solve. x + y = 1200 0.20x + 0.40y = 36	
100. Two numbers have a sum of 25 and a difference if 7. What are the two numbers?	? and toonies	ocket full of loonies (\$1 coins) (\$2 coins). She has \$41 in total. coins, how many of each does
102. When three times one number is added to two times another number, the sum is 21. When 4 times the second number is subtracted from 10 times the first number, the difference is 38. What are the numbers	and two cool coffees and t individual co	st (before taxes) for three coffees kies is \$10.05. The cost for five three cookies is \$16.10. Find the ost for each item.

June18

Solving Problems with Systems of Equations. Use the method of your choice.

Solving Problems With Systems of Equations	y
104. A job offered to Mr. Xu will pay straight commission at a rate of 6% on all sales. A second job offer will pay a monthly salary of \$400 and 2% commission. How much would Mr. Xu have to sell so that both jobs would pay him the same amount.	105. In his 2004-05 season, Steve Nash scored 524 total baskets (not including free throws). He scored 336 more two point baskets than three point baskets. Write and solve a system of linear equations that represents this problem.
When would the job paying straight commission be a better choice?	Interpret your solution:
106. Mr. J has a class with 30 students in it. 22 of those students own a cell phone. $\frac{4}{5}$ of the girls owned a cell phone and $\frac{3}{5}$ of the boys owned a cell phone. How many girls were in this class?	107. Daiki invested a total of \$12 000 in two stocks in 2009. One stock earned 4% interest and the other earned 7% interest. Daiki earned a total of \$615 in interest in 2009. How much did he invest in each stock?

June18

108. Breakers Volleyball sold 570 tickets to their	109. Mr. J is doing routine maintenance on his old
home opener, some tickets cost \$2 and some	farm truck. This month he spent \$26.50 on 6
cost \$5. The total revenue was \$1950. How	litres of oil and 2 gaskets. Last month he
many of each type of ticket were sold?	spent \$25.00 on 4 litres of oil and 4 gaskets.
many of each type of ticket were solu.	Find the price of each gasket and one litre of
	oil.
110. Anya makes a trip to the local grocery store	111. For his Christmas party, Teems Prey is
to buy some bulk candy. She chooses two of	making a bowl of exotic punch for the kid's
her favourite candies, gummy frogs and	table. Imported lychee juice sells for \$12.50
gummy penguins. Gummy frogs sell for	per litre and guava nectar sells for \$18 per
\$1.10 per 100g and penguins sell for \$1.75	litre. He is making 8 litres and will need to
per 100g. Anya buys a total of 500g of candy	pay \$126.40 for the perfect blend. How
for \$7.84 (no taxes). How much of each type	much of each type does he use?
did she buy?	

For each of the following problems, write and solve a system of equations. Interpret solutions!

Page 22 | Linear Systems

www.mathbeacon.ca	June18	www.mathbeacon.com
112. Jay Maholl swam 12 km downstream in Englishman River in two hours. The return trip upstream took 6 hours. Find the speed of the current in Englishman River.	n	14. The Lucky-Lady dinghy travels 25 km upstream in five hours. The return trip takes only half an hour. Find the speed of the boat and the speed of the current.
113. (What assumption must you make?)		
115. A bumble bee travels 4.5 km into a headwi in 45 minutes. The return trip with the wi only takes 15 minutes. Assuming speeds a constant, find the speed of the bumble bee still air.	nd re	16. A plane flew a distance of 650 km in 3.25 hours when travelling in a tailwind. The return trip took 6.5 hours against the same wind. Assume both speeds are constant. Find the speed of the plane and the wind speed.

Page 23 | Linear Systems

June18

www.mathbeacon.com

117. A 50% acid solution is required for a chemistry lab. The instructor has a 20% stock solution and a 70% stock solution. She needs to make 20 litres of the 50% acid solution. How much of each stock solution should she use?

Let x = volume of 20% solution

Let y = volume of 70% solution.

x + y = 200.2x + 0.7y = (0.5)(20)

Solve the System:

118. A 65% acid solution is required for a chemistry lab. The instructor has a 20% stock solution and a 70% stock solution. She needs to make 20 litres of the 65% acid solution. How much of each stock solution should she use?

119. The karat (or carat) is a measure of the purity of	120. A goldsmith needs to make 50g of
gold in gold alloy. 18K gold is approximately 75%	14K gold (58.5%) from 18K (75%)
pure and 14K gold is approximately 58.5% pure.	and 10K (41.7%) stock alloys. How
Using 18K and 14K stock, a goldsmith needs to	much of each does she need? (round
produce 40g of gold alloy that is 70% pure. How	to nearest hundredth)
much of each stock will he need to use? (round to	
nearest hundredth)	

į

P a g e 24 | Linear Systems