Polynomials

This booklet belongs to: Period

LESSON \#	DATE	QUESTIONS FROM NOTES	Questions that I find difficult
		Pg.	
		Pg.	REVIEW
			TEST

Your teacher has important instructions for you to write down below.
\qquad
\qquad

POLYNOMIALS

 Number SPECIFIC OUTCOMES		TOPICS	REVIEW Note or Example
Demonstrate an understanding of the multiplication of polynomial expressions (limited to monomials, binomials and trinomials), concretely, pictorially and symbolically.	4.1	Model the multiplication of two given binomials, concretely or pictorially, and record the process symbolically.	
	4.2	Relate the multiplication of two binomial expressions to an area model.	
	4.3	Explain, using examples, the relationship between the multiplication of binomials and the multiplication of two-digit numbers.	
	4.4	Verify a polynomial product by substituting numbers for the variables.	
	4.5	Multiply two polynomials symbolically, and combine like terms in the product.	
	4.6	Generalize and explain a strategy for multiplication of polynomials.	
	4.7	Identify and explain errors in a solution for a polynomial multiplication.	
Demonstrate an understanding of common factors and trinomial factoring, concretely, pictorially and symbolically.	5.1	Determine the common factors in the terms of a polynomial, and express the polynomial in factored form.	
	5.2	Model the factoring of a trinomial, concretely or pictorially, and record the process symbolically.	
	5.3	Factor a polynomial that is a difference of squares, and explain why it is a special case of trinomial factoring where $b=0$	
	5.4	Identify and explain errors in a polynomial factorization.	
	5.5	Factor a polynomial, and verify by multiplying the factors.	
	5.6	Explain, using examples, the relationship between multiplication and factoring of polynomials.	
	5.7	Generalize and explain strategies used to factor a trinomial.	
	5.8	Express a polynomial as a product of its factors.	

[C] Communication [PS] Problem Solving, [CN] Connections [R] Reasoning, [ME] Mental Mathematics [T] Technology, and Estimation,
[V] Visualization

Polynomials: Key Terms

Term	Definition	Example
Monomial		
Binomial		
Trinomial		
Polynomial		
Degree of a term		
Degree of a Polynomial		
Algebra Tiles		
Combine like-terms		
Area Model		
Distribution or Expanding		
FOIL		
GCF		
Factoring using a GCF		
Factoring by Grouping		
Factoring $a x^{2}+b x+c$ when $a=1$		
Factoring $a x^{2}+b x+c$ when $a \neq 1$		
Difference of Squares		
Perfect Square Trinomial		

What is a Polynomial?

What is a Term?
A term is a number and/or variable connected by multiplication or division. One term is also called a monomial.

The following are terms: $\quad 5, \quad \mathrm{x}, \quad 3 \mathrm{x}, \quad 5 \mathrm{x}^{2}, \quad \frac{3 \mathrm{x}}{4}, \quad-2 \mathrm{xy}^{2} \mathrm{z}^{3}$

Each term may have a coefficient, variable(s) and exponents. One term is also called a monomial.

Answer the questions below.

1. What is/are the coefficients below?

$$
5 x y^{2}-7 x+3
$$

2. What is/are the constant(s) below?

$$
12 x^{2}-5 x+13
$$

3. What is/are the variable(s) below?

$$
5 x y^{2}+3
$$

A polynomial is an expression made up of one or more terms connected to the next by addition or subtraction.

We say a polynomial is any expression where the coefficients are real numbers and all exponents are whole numbers. That is, no variables under radicals, no variables in denominators (negative exponents).

The following are polynomials:

$$
x, \quad 2 x-5, \quad 5+3 x^{2}-12 y^{3}, \quad \frac{x^{2}+3 x+2}{2}, \quad \sqrt{3} x^{2}+5 y-z
$$

The following are NOT polynomials:

$$
x^{-2}, \quad 3 \sqrt{x}, \quad 4 x y+3 x y^{-3}, \quad 12 x z+3^{x}
$$

Which of the following are not polynomials? Indicate why.
4. $3 x y z-\frac{2}{x}$

6. $2 x-4 y^{-2}$
7. $(3 x+2)^{\frac{1}{3}}$
8. $\sqrt{3}+x^{2}-5$
9. $\frac{5}{3} x-2^{x}$

Classifying polynomials:

By Number of Terms:

- Monomial: one term.
- Binomial: two terms

Eg. $\quad 7 x, \quad 5, \quad-3 x y^{3}$

- Trinomial: three terms Eg.

Eg. $\quad x+2, \quad 5 x-3 y, y^{3}+\frac{5 x}{3}$
$x^{2}+3 x+1$
$5 x y-3 x+y^{2}$

- Polynomial: four terms Eg.
$7 x+y-z+5$,
$x^{4}-3 x^{3}+x^{2}-7 x$

By Degree:
To find the degree of a term, add the exponents within that term.
Eg. $\quad-3 x y^{3}$ is a $4^{\text {th }}$ degree term because the sum of the exponents is 4 . $5 z^{4} y^{2} x^{3}$ is a $9^{\text {th }}$ degree term because the sum of the exponents is 9 .

To find the degree of a polynomial first calculate the degree of each term. The highest degree amongst the terms is the degree of the polynomial.

Eg. $\quad x^{4}-3 x^{3}+x^{2}-7 x$ is a $4^{\text {th }}$ degree polynomial. The highest degree term is x^{4}. $3 x y z^{4}-2 x^{2} y^{3}$ is a $6^{\text {th }}$ degree binomial. The highest degree term is $3 x y z^{4}$ ($6^{\text {th }}$ degree)

Classify each of the following by degree and by number of terms.

10. $2 x+3$	11. $x^{3}-2 x^{2}+7$	12. $2 a^{3} b^{4}+a^{2} b^{4}-27 c^{5}+3$
Degree:__1_	Degree: ____	Degree:
Name: _Binomial	Name: ___ ___	Name:
13. 7	14. Write a polynomial with one term that is degree 3 .	15. Write a polynomial with three terms that is degree 5.
Name: ________		

Algebra Tiles

The following will be used as a legend for algebra tiles in this guidebook.

Write an expression that can be represented by each of the following diagrams.

25. Simplify by cancelling out tiles that add to zero. Write the remaining expression.

28. Represent the following addition using algebra tiles. Do not add.
$(5 x+3)+(2 x+1)$
26. Simplify by cancelling out tiles that add to zero. Write the remaining expression.
27. Represent the following addition using algebra tiles. Do not add.

$$
x+(x-1)
$$

30. Use Algebra tiles to add the following polynomials. (collect like-terms)

$$
\left(2 x^{2}+5 x-3\right)+\left(-3 x^{2}+5\right)
$$

The Zero Principle:

The idea that opposites cancel each other out and the result is zero.
Eg. $x+3+(-3)=x$
The addition of opposites did not change the initial expression.

 following tiles?

Sum \qquad
34. Why can you not simply "collect like-terms" when subtracting the two binomials in the previous question?
32. If you add the following to an expression, what have you increased the expression by?

33. Represent the following subtraction using algebra tiles.

$$
(2 x-1)-(-x+2)
$$

35. When asked to subtract $(2 x-1)-(-x+2)$, Raj drew the following diagram:

Explain how Raj applied the zero principle to subtract the polynomials.
36. Use Algebra tiles to subtract the following polynomials.

$$
(2 x-1)-(-5 x+5)
$$

37. Use Algebra tiles to subtract the following polynomials.

$$
\left(2 x^{2}+5 x-3\right)-\left(-3 x^{2}+5\right)
$$

38. Use Algebra tiles to subtract the following polynomials.

$$
\left(-2 x^{2}-4 x-3\right)-\left(-3 x^{2}+5\right)
$$

Like Terms

39. When considering algebra tiles, what makes two tiles "alike"?
40. What do you think makes two algebraic terms alike? (Remember, tiles are used to represent the parts of an expression.)

Collecting Like Terms without tiles:

Exactly the same variable \& exponents.

You have previously been taught to combine like terms in algebraic expressions.
Terms that have the same variable factors, such as $7 x$ and $5 x$, are called like terms.
Simplify any expression containing like terms by adding their coefficients.

Eg.1. Simplify:

$$
\begin{aligned}
& 7 x+3 y+5 x-2 y \\
& 7 x+5 x+3 y-2 y \\
& =12 x+y
\end{aligned}
$$

Eg.2. Simplify
$3 x^{2}+4 x y-6 x y+8 x^{2}-3 y x$
$3 x^{2}+8 x^{2}+4 x y-6 x y-3 x y$
$=11 x^{2}-5 x y$

Simplify by collecting like terms. Then evaluate each expression for $x=3, y=-2$.
41. $3 x+7 y-12 x+2 y$
42. $2 x^{2}+3 x^{3}-7 x^{2}-6$
43. $5 x^{2} y^{3}-5+6 x^{2} y^{3}$

Adding \& Subtracting Polynomials without TILES.

ADDITION
To add polynomials, collect like terms.
Eg.1. $\quad\left(x^{2}+4 x-2\right)+\left(2 x^{2}-6 x+9\right)$

Horizontal Method:

$$
\begin{aligned}
& =x^{2}+4 x-2+2 x^{2}-6 x+9 \\
& =x^{2}+2 x^{2}+4 x-6 x-2+9 \\
& =3 x^{2}-2 x+7
\end{aligned}
$$

Vertical Method:

$$
\begin{aligned}
& x^{2}+4 x-2 \\
& \underline{2 x^{2}-6 x+9} \\
& =3 x^{2}-2 x+7
\end{aligned}
$$

SUBTRACTION

It is important to remember that the subtraction refers to all terms in the bracket immediately after it.
To subtract a polynomial, determine the opposite and add.
Eg.2. $\left(4 x^{2}-2 x+3\right)-\left(3 x^{2}+5 x-2\right)$

Multiplying each term by -1 will remove the brackets from the second polynomial.

This question means the same as:

$$
\begin{aligned}
& \left(4 x^{2}-2 x+3\right)-\mathbf{1}\left(3 x^{2}+5 x-2\right) \\
& =4 x^{2}-2 x+3-3 x^{2}-5 x+2 \\
& =4 x^{2}-3 x^{2}-2 x-5 x+3+2 \\
& =x^{2}-7 x+5
\end{aligned}
$$

We could have used vertical addition once the opposite was determined if we chose.

Add or subtract the following polynomials as indicated.

44. $(4 x+8)+(2 x+9)$	45. $(3 a+7 b)+(9 a-3 b)$	46. $(7 x+9)-(3 x+5)$
47. Add.	48. Subtract.	49. Subtract.
$(4 a-2 b)$	$(7 x-3 y)$	$(12 a-5 b)$
$\underline{+(3 a+2 b)}$	-(-5x+2y)	$\underline{-(-7 a-2 b)}$

Add or subtract the following polynomials as indicated.
50. $\left(5 x^{2}-4 x-2\right)+\left(8 x^{2}+3 x-3\right)$
51. $\left(3 m^{2} n+m n-7 n\right)-\left(5 m^{2} n+3 m n-8 n\right)$
52. $\left(8 y^{2}+5 y-7\right)-\left(9 y^{2}+3 y-3\right)$
53. $\left(2 x^{2}-6 x y+9\right)+\left(8 x^{2}+3 x-3\right)$

Your notes here...

Multiplication and the Area Model

Sometimes it is convenient to use a tool from one aspect of mathematics to study another.
To find the product of two numbers, we can consider the numbers as side lengths of a rectangle.
How are side lengths, rectangles, and products related? The Area Model
The product of the two sides is the area of a rectangle. $A=l w$

Length $=$ \qquad Width $=$ \qquad
54. Show why $3 \times 3=9$ using the area model.

Solution:

57. How might we show $-2 \times 4=-8$ using the area model?

60. How might we show $-2 \times-4=8$ using the area model?

55. Show why $3 \times 4=12$ using the area model.

58. Calculate -3×4 using the area model.

61. Calculate -3×-4 using the area model.

56. Calculate 5×4 using the area model.

59. Calculate -5×4 using the area model.

62. Calculate -5×-4 using the area model.

There are some limitations when using the area model to show multiplication. The properties of multiplying integers (,++), (,+-), (,--) need to be interpreted by the reader.

Algebra tiles and the area model: Multiplication/Division of algebraic expressions.

First we must agree that the following shapes will have the indicated meaning.
1
-1
x

-X

X^{2}

$-x^{2}$
;

We must also remember the result when we multiply:

- Two positives = Positive
- Two negatives = Positive
- One positive and one negative = Negative

72. Write an equation represented by the diagram below and then multiply the two monomials using the area model.

73. Write an equation represented by the diagram below and then multiply the two monomials using the area model.

74. Write an equation represented by the diagram below and then multiply the two monomials using the area model.

75. If the shaded rectangle represents a negative value, find the product of the two monomials.

76. Write an equation represented by the diagram below and then multiply the two monomials using the area model.

77. Write an equation represented by the diagram below and then multiply the two monomials using the area model.

78. Write an equation represented by the diagram below and then multiply the two polynomials using the area model.

79. Write a quotient that can be represented by the diagram below and then find the missing side length using the area model.

Area $=6 x$

Length: \qquad
79. Write an equation represented by the diagram below and then multiply the two polynomials using the area model.

82. Write a quotient that can be represented by the diagram below and then find the missing side length using the area model.

Area $=6 x^{2}$

Length: \qquad
80. Write an equation represented by the diagram below and then multiply the two polynomials using the area model.

83. Write a quotient that can be represented by the diagram below and then find the missing side length using the area model

Area $=-6 x^{2}$

Length: \qquad

90. Draw and use an area model to find the product:
$(x)(x+3)$
93. Write a quotient that can be represented by the diagram below and then find the missing side length using the area model.

Area $=x^{2}+3 x$

Length: \qquad
91. Draw and use an area model to find the product:
$(-x)(x+3)$
92. Draw and use an area model to find the product:
$(-3 x)(2 x+3)$
94. Write a quotient that can be represented by the diagram below and then find the missing side length using the area model.

Area $=-x^{2}-3 x$

Length: \qquad
95. Write a quotient that can be represented by the diagram below and then find the missing side length using the area model.

Area $=2 x^{2}-8 x$

Length: \qquad

96. Find the area, length and width that can be represented by the diagram.

Length:
Width:
97. Find the area, length and width that can be represented by the diagram.

Area:
Length:
Width:
98. Find the area, length and width that can be represented by the diagram.

Area:
Length:
Width:

Multiplying \& Dividing Monomials without TILES

When multiplying expressions that have more than one variable or degrees higher than 2 , algebra tiles are not as useful.

Multiplying Monomials:

Eg.1.
$\left(2 x^{2}\right)(7 x) \quad$ Multiply numerical coefficients.
$=2 \times 7 \times x \times x^{2} \quad$ Multiply variables using exponent laws.
$=14 x^{3}$

> Eg.2. $\left.=-4 \times 3 \times a^{2} \times a \times b \times b^{3}\right)$ $=-12 a^{3} b^{4}$

Dividing Monomials:
Eg.1.
$\frac{20 x^{3} y^{4}}{-5 x^{2} y^{2}}$
Divide the numerical coefficients.
$=\frac{20}{-5} \frac{x^{3}}{x^{2}} \frac{y^{4}}{y^{2}}$ Divide variables using exponent laws.
$=\frac{-36}{-9} \frac{m^{3}}{m^{3}} \frac{n^{4}}{n} \frac{p^{2}}{p}$
$=-4 x y^{2} \quad=4 n^{3} p$

Multiply or Divide the following.

99. $\left(-2 a b^{3}\right)\left(-3 a b^{5}\right)$	100. $\left(5 x^{2} y^{3}\right)\left(-2 x^{3} y^{5}\right)$	101. $4 x\left(-3 x^{3}\right)$
102. $\left(\frac{1}{2} a b^{2}\right)\left(\frac{3}{4} a^{3} b\right)$	103. $\frac{-75 s^{2} t^{5}}{15 s^{2}{ }^{2}}$	104. $\frac{-45 x^{3} y z^{2}}{-9 x^{2} y}$
105. $\frac{24 x^{3} y^{2}}{18 x y^{3}}$	106. $(2 c d)\left(-2 c^{2} d^{3}\right)(5 c)$	$\text { 107. } \frac{(3 x y)\left(4 x^{3} y^{2}\right)}{2 x^{2} y}$

Multiplying Binomials

Challenge:

108. Which of the following are equal to

$$
x^{2}+9 x+18 ?
$$

a) $(x+3)(x+6)$
b) $(x+1)(x+18)$
c) $(x-3)(x-6)$
d) $(x+2)(x+9)$

Challenge:

109. Multiply $(2 x+1)(x-5)$
110. Write an equation represented by the diagram below and then multiply the two polynomials using the area model.

111. Write an equation represented by the diagram below and then multiply the two polynomials using the area model.

112. Write an equation represented by the diagram below and then multiply the two polynomials using the area model.

113. Draw and use an area model to find the product:
$(x+2)(2 x+1)$
114. Write an equation represented by the diagram below and then multiply the two polynomials using the area model.

115. Draw and use an area model to find the product:
$(2 x-1)(x-3)$

122. Find the area, length and width that can be represented by the diagram.	123. Find the area, length and width that can be represented by the diagram.	124. Find the area, length and width that can be represented by the
diagram.		

Multiplying Polynomials without TILES

Multiplying Binomials:
*use FOIL
Eg.1. $(x+3)(x+6)=x^{2}+6 x+3 x+18=x^{2}+\mathbf{9 x}+18$

Eg.2. $(2 x+1)(x-5)=2 x^{2}-10 x+x-5=\mathbf{2} \boldsymbol{x}^{2}-\mathbf{9 x}-\mathbf{5}$

Multiplying a Binomial by a Trinomial:
Eg. $(y-3)\left(y^{2}-4 y+7\right)=y^{3}-4 y^{2}+7 y-3 y^{2}+12 y-21=\boldsymbol{y}^{\mathbf{3}}-\mathbf{7} \boldsymbol{y}^{\mathbf{2}}+\mathbf{1 9 y}-\mathbf{2 1}$

Multiply each term in the first polynomial by each term in the second.

Multiplying: Binomial \times Binomial \times Binomial

$$
\text { Eg. } \begin{aligned}
& (x+2)(x-3)(x+4) \\
& =\left(x^{2}-3 x+2 x-6\right)(x+4) \\
& =\left(x^{2}-x-6\right)(x+4) \\
& =x^{3}+4 x^{2}-x^{2}-4 x-6 x-24 \\
& =\boldsymbol{x}^{3}+3 \boldsymbol{x}^{2}-\mathbf{1 0 x}-\mathbf{2 4}
\end{aligned}
$$

Multiply the first two brackets (FOIL) to make a new trinomial.
Then multiply the new trinomial by the remaining binomial

Multiply the following as illustrated above.
128. $(x+2)(x-5)$

$$
\text { 129. }(2 x+1)(x-3)
$$

Multiply the following.

131. $(x+2)(x+2)$	132. $(2 x+1)(3 x-3)$	133. $(2 x+1)(2 x-1)$
134. $(x+2)^{2}$	135. $(2 x+5)^{2}$	136. $(x-1)(x-1)(x+4)$
137. $(x-5)\left(x^{2}-5 x+1\right)$	138. $(2 x-3)\left(3 x^{2}+2 x+1\right)$	139. $(x+2)^{3}$

Special Products: Follow the patterns

$$
\begin{aligned}
\text { Conjugates: } \quad & (a+b)(a-b) \\
= & a^{2}+a b-a b-b^{2} \\
= & a^{2}-b^{2}
\end{aligned}
$$

140. Write an expression for the following diagram (do not simplify):

What two binomials are being multiplied above?

Write an equation using the binomials above and the simplified product.
141. Write an expression for the following diagram (do not simplify):

What two binomials are being multiplied above?

Write an equation using the binomials above and the simplified product.

QUESTION... Describe any patterns you observe in the two questions above.

Remember this pattern...it will be important when we factor "A Difference of Squares" later in this booklet.
142. Write an expression (polynomial) for the following diagram (do not simplify):

What two binomials are being multiplied above?

Write an equation using the binomials above and the simplified product.
143. Write an expression for the following diagram (do not simplify):

What two binomials are being multiplied above?

Write an equation using the binomials above and the simplified product.

Simplify the following.
144. $(x+3)(x-3)$
145. $(2 x+3)(2 x-3)$

$$
\text { 147. }(x+\sqrt{2 y})(x-\sqrt{2 y})
$$

Simplify the following.

Some key points to master about the Distributive Property...
FOIL
$(a+b)(a-b)$
$(a+b)^{2}$
$(a+b)^{3}$

Factoring:

When a number is written as a product of two other numbers, we say it is factored.
"Factor Fully" means to write as a product of prime factors.

Eg.1.

Write 15 as a product of its prime factors.

$$
15=5 \times 3
$$

5 and 3 are the prime factors.

Eg. 2.
Write 48 as a product of its prime factors.

$$
\begin{gathered}
48=8 \times 6 \\
48=2 \times 2 \times 2 \times 3 \times 2 \\
48=2^{4} \times 3
\end{gathered}
$$

Eg.3.
Write 120 as a product of its prime factors.

$$
\begin{gathered}
120=10 \times 12 \\
120=2 \times 5 \times 2 \times 2 \times 3 \\
120=2^{3} \times 3 \times 5
\end{gathered}
$$

154. Write 18 as a product of its prime factors.
155. Write 144 as a product of its prime factors.
156. Write 64 as a product of its prime factors.
157. Find the greatest common factor (GCF) of 36 and 270.

Both contain $2 \times 2 \times 2 \times 3$, therefore this is the GCF,

GCF is 24 .

$$
\begin{gathered}
48=2^{4} \times 3 \\
120=2^{3} \times 3 \times 5
\end{gathered}
$$

Look at each factored form.
157. Find the greatest common factor (GCF) of 48 and 120.
158. Find the greatest common factor (GCF) of 144 and 64.

We can also write algebraic expressions in factored from.
Eg.4. Write $36 x^{2} y^{3}$ as a product of its factors.

$$
\begin{gathered}
36 x^{2} y^{3}=9 \times 4 \times x \times x \times y \times y \times y \\
36 x^{2} y^{3}=3^{2} \times 2^{2} \times x^{2} \times y^{3}
\end{gathered}
$$

160. Write $10 a^{2} b$ as a product of its factors.
161. Write $18 a b^{2} c^{3}$ as a product of its factors.
162. Write $12 b^{3} c^{2}$ as a product of its factors.
163. Find the greatest common factor (GCF) of $10 a^{2} b$ and $18 a b^{2} c^{3}$.
164. Find the greatest common factor (GCF) of $12 b^{3} c^{2}$ and $18 a b^{2} c^{3}$.
165. Find the greatest common factor (GCF) of $10 a^{2} b$, $18 a b^{2} c^{3}$, and $12 b^{3} c^{2}$.

Factoring Polynomials:

Factoring means "write as a product of factors."
The method you use depends on the type of polynomial you are factoring.

Challenge Question:

Write a multiplication that would be equal to $5 x+10$.

Challenge Question:
Write a multiplication that would be equal to $3 x^{3}+6 x^{2}-12 x$.

Factoring: Look for a Greatest Common Factor Hint: Always look for a GCF first.

Ask yourself: "Do all terms have a common integral or variable factor?"
Eg.1. Factor the expression.
$5 x+10$
$=5(x)+5(2)$

Think...what factor do $5 x$ and 10 have in common?
Both are divisible by $5 \ldots$..that is the GCF.
Write each term as a product using the GCF.

$=\mathbf{5 (x + 2)}$$\quad$| Write the GCF outside the brackets, remaining factors inside. |
| :--- |

Eg. 2.
Factor the expression

$$
3 \mathrm{ax}^{3}+6 \mathrm{ax}^{2}-12 \mathrm{ax}
$$

GCF $=3 \mathrm{ax}$
$=3 a x\left(x^{2}\right)+3 a x(2 x)+3 a x(-4)$

$$
=3 a x\left(x^{2}+2 x-4\right)
$$

You should check your answer by expanding. This will get you back to the original polynomial.

Eg.3. Factor the expression $4 x+4$ using algebra tiles.

$$
4(x+1)=4 x+4
$$

Factor the following polynomials.

The common factor $\underline{\mathbf{I S}}$ the term in the brackets!

Eg.1. Factor. $4 x(w+1)+5 y(w+1) \quad$ Eg.2. Factor. $3 x(a+7)-(a+7)$

$$
\begin{aligned}
& 4 x(w+1)+5 y(w+1) \\
& =(w+1)(4 x)+(w+1)(5 y) \\
& =(w+1)(4 x+5 y)
\end{aligned}
$$

$$
3 x(a+7)-(a+7)
$$

$$
=(a+7)(3 x)-(a+7)(1)
$$

$$
=(a+7)(3 x-1)
$$

Sometimes it is easier to understand if we substitute a letter, such as d where the common binomial is.

Consider Eg.1.

$4 x(w+1)+5 y(w+1)$	Substitute d for $(w+1)$.
$4 x d+5 y d$	
$d(4 x+5 y)$	Now replace $(w+1)$.
$=(w+1)(4 x+5 y)$	

Factor the following, if possible.

Challenge Question:
Factor the expression $a c+b d+a d+b c$.

Factoring: Factor by Grouping.

Hint: 4 terms!

Sometimes a polynomial with 4 terms but no common factor can be arranged so that grouping the terms into two pairs allows you to factor.

You will use the concept covered above...common binomial factor.
Eg.1. Factor $a c+b d+a d+b c$

$a c+b c+a d+b d$	Group terms that have a common factor.
$c(a+b)+d(a+b)$	Notice the newly created binomial factor, $(a+b)$.
$=(\boldsymbol{a}+\boldsymbol{b})(\boldsymbol{c}+\boldsymbol{d})$	Factor out the binomial factor.

Eg.2. Factor $5 m^{2} t-10 m^{2}+t^{2}-2 t$
$5 m^{2} t-10 m^{2}-t^{2}+2 t$ Group.
$5 m^{2}(t-2)-t(t-2) \quad$ *Notice that I factored out a $-t$ in the second group.
$=(t-2)\left(5 m^{2}-t\right)$

183. $w x+w y+x z+y z$	184. $x^{2}+x-x y-y$	185. $x y+12+4 x+3 y$
186. $2 x^{2}+6 y+4 x+3 x y$	187. $m^{2}-4 n+4 m-m n$	188. $3 a^{2}+6 b^{2}-9 a-2 a b^{2}$

Factoring: $\boldsymbol{a} \boldsymbol{x}^{2}+\boldsymbol{b} \boldsymbol{x}+\boldsymbol{c} \quad$ (where a=1) with tiles.

Hint: 3 terms, no common factor, leading coefficient is 1 .
Eg.1. Consider $x^{2}+3 x+2$. The trinomial can be represented by the rectangle below.
Recall, the side lengths
will give us the "factors".

$$
\therefore x^{2}+3 x+2=(x+1)(x+2)
$$

Eg.2. Factor $x^{2}-5 x-6$

$\therefore x^{2}-5 x-6=(x+1)(x-6)$

Factor the following trinomials using algebra tiles.

Factoring: $\boldsymbol{a} \boldsymbol{x}^{2}+\boldsymbol{b} \boldsymbol{x}+\boldsymbol{c} \quad$ (where a=1) without tiles.

Did you see the pattern with the tiles?
If a trinomial in the form $\boldsymbol{x}^{2}+\boldsymbol{b} \boldsymbol{x}+\boldsymbol{c}$ can be factored, it will end up as $(x+\ldots)(x+\ldots)$.
The trick is to find the numbers that fill the spaces in the brackets.

The Method...
If the trinomial is in the form: $x^{2}+b x+c$, look for two numbers that multiply to c, and add to b.

Eg.1.
Factor. $x^{2}+6 x+8$

$$
\begin{array}{ll}
(x+\ldots)(x+\ldots) & \text { What two numbers multiply to }+8 \text { but add to }+6 ? \quad 2 \text { and } 4 \\
=(x+2)(x+4) & \text { The numbers } 2 \text { and } 4 \text { fill the spaces inside the brackets. }
\end{array}
$$

Eg.2. Factor. $x^{2}-11 x+18$
$(x+\ldots)(x+\ldots) \quad$ What two numbers multiply to +18 but add to $-11 ? \quad-2$ and -9
$=(x-2)(x-9) \quad$ The numbers -2 and -9 fill the spaces inside the brackets.

Eg.3. Factor. $x^{2}-7 x y-60 y^{2}$ The y^{\prime} s can be ignored temporarily to find the two numbers. Just write them in at the end of each bracket.
$(x+\ldots y)(x+\ldots y) \quad$ What two numbers multiply to -60 but add to $-7 ? \quad-12$ and +5
$=(\boldsymbol{x}-\mathbf{1 2 y})(\boldsymbol{x}+\mathbf{5 y}) \quad$ The numbers -12 and +5 fill the spaces in front of the $y^{\prime} s$.

Factor the trinomial if possible.
193. $a^{2}+6 a+5 ~ 194 . n^{2}+7 n+10 \quad 195 \cdot x^{2}-x-30$

Factor the trinomials if possible.

Challenge Question
Factor $2 x^{2}+7 x+6$.

Factoring $a x^{2}+b x+c \quad$ where $a \neq 1$

When the trinomial has an x^{2} term with a coefficient other than 1 on the x^{2} term, you cannot use the same method as you did when the coefficient is 1 .

We will discuss 3 other methods:

1. Trial \& Error 2. Decomposition
2. Algebra Tiles

Trial \& Error:

Eg.1. Factor $2 x^{2}+5 x+3$.
$2 x^{2}+5 x+3=(\quad)\left(\quad\right.$ We know the first terms in the brackets have product of $2 x^{2}$
$2 x^{2}+5 x+3=(2 x \quad)(x) \quad 2 x$ and x have a product of $2 x^{2}$, place them at front of brackets.
The product of the second terms is 3 . $(1,3$ or $-1,-3)$. These will fill in the second part of the binomials.

List the possible combinations of factors.

Decomposition:

Using this method, you will break apart the middle term in the trinomial, then factor by grouping.

To factor $\boldsymbol{a} \boldsymbol{x}^{2}+\boldsymbol{b} \boldsymbol{x}+\boldsymbol{c}, \quad$ look for two numbers with a product of $\boldsymbol{a} \boldsymbol{c}$ and a sum of \boldsymbol{b}.

Eg.1. Factor. $\quad 3 x^{2}-10 x+8$

> 1. We see that $\quad a c=3 \times 8=24$; and $b=-10$
> We need two numbers with a product of 24 , but add to $-10 \ldots$ -6 and -4 .

$$
\begin{array}{ll}
3 x^{2}-6 x-4 x+8 & \text { 2. Break apart the middle term. } \\
3 x(x-2)-4(x-2) & \text { 3. Factor by grouping. } \\
=(x-2)(3 x-4) &
\end{array}
$$

Eg.2. Factor.	$3 a^{2}-22 a+7$	We need numbers that multiply to 21, but add to $-22 \ldots$
	$3 a^{2}-\mathbf{2 1 a - 1 a + 7}$	-21 and $\mathbf{- 1}$ $3 a(a-7)-1(a-7)$ $=(\boldsymbol{a}-7)(\mathbf{3 a}-\mathbf{1})$
	Decompose middle term.	

Eg.3. Factor $2 x^{2}+7 x+6$ using algebra tiles.

Arrange the tiles into a rectangle (notice the "ones" are again grouped together at the corner of the x^{2} tiles)
Side lengths are $(2 x+3)$ and $(x+2)$

$$
\therefore 2 x^{2}+7 x+6=(2 x+3)(x+2)
$$

Your notes here...

Factor the following if possible.

A Difference of Squares

220. Write an expression for the following diagram (do not simplify):

Solution: $x^{2}-2 x+2 x-4$

What two binomials are being multiplied above?

$$
(x-2)(x+2)
$$

Write an equation using the binomials above and the simplified product.
$x^{2}-4=(x-2)(x+2)$

Factored Form

222. Write an expression for the following diagram (do not simplify):

What two binomials are being multiplied above?

Factor the polynomial represented above by writing the binomials as a product (multiplication).
221. Write an expression for the following diagram (do not simplify):

What two binomials are being multiplied above?

Write an equation using the binomials above and the simplified product.
223. Write an expression for the following diagram (do not simplify):

What two binomials are being multiplied above?

Factor the polynomial represented above by writing the binomials as a product (multiplication).

Factoring a Difference of Squares: $a^{2}-b^{2}$

Conjugates: Sum of two terms and a difference of two terms.
Learn the pattern that exists for multiplying conjugates.
$(x+2)(x-2)=x^{2}-2 x+2 x-4=x^{2}-4 \quad$ The two middle terms cancel each other out.
We can use this knowledge to quickly factor polynomials that look like $x^{2}-4$.

Eg.1. Factor $x^{2}-9$.
$=(x+3)(x-3) \quad$ Square root each term, place them in 2 brackets with opposite signs $(+$ and -$)$.

Eg.2. Factor $100 a^{2}-81 b^{2}$
$=(10 a+9 b)(10 a-9 b) \quad$ Square root each term, place them in 2 brackets with opposite signs (+ and -).

Factor the following completely.

I recognize a polynomial is a difference of squares because
\qquad
\qquad

Factor the following completely.

$227.4 x^{2}-36$	$228.9 x^{2}-y^{2}$	$229.25 a^{4}-36$
$230.49 t^{2}-36 u^{2}$	231. $7 x^{2}-28 y^{2}$	232. $-18 a^{2}+2 b^{2}$
$233 .-9+d^{4}$	$\text { 234. } \frac{a^{2}}{9}-\frac{b^{2}}{16}$	$\text { 235. } \frac{x^{2} y^{2}}{49}-1$

Factoring a Perfect Square Trinomial

236. Write an expression for the following diagram (do not simplify):

What two binomials are being multiplied above?

Write an equation using the binomials above and the simplified product.
238. Write an expression for the following diagram (do not simplify):

What two binomials are being multiplied above?

Write an equation using the binomials above and the simplified product.
237. Write an expression for the following diagram (do not simplify):

What two binomials are being multiplied above?

Write an equation using the binomials above and the simplified product.
239. Write an expression for the following diagram (do not simplify):

What two binomials are being multiplied above?

Write an equation using the binomials above and the simplified product.

PERFECT SQUARE TRINOMIALS

You may use the methods for factoring trinomials to factor trinomial squares but recognizing them could make factoring them quicker and easier.

Eg.1. Factor.
$x^{2}+6 x+9 \quad$ Recognize that the first and last terms are both perfect squares.
$(x+3)^{2} \quad$ Guess by taking the square root of the first and last terms and put them in two sets of brackets.

Check: Does $2(x)(3)=6 x$
Yes! Trinomial Square!
Answer in simplest form.

Eg.2. Factor.
$121 m^{2}-22 m+1$

Factor the following.

Create a Factoring Flowchart.

Start with the first thing you should do....collect like terms.

Combined Factoring. Factor the following completely.

HIGHER DIFFICULTY..
For some of the following questions, you may try substituting a variable in the place of the brackets to factor first, and then replace brackets.

258. Factor.

$$
(x+2)^{2}-(x-3)^{2}
$$

259. Find all the values of k so that $x^{2}+k x-12$ can be factored.
260. For which integral values of k can $3 x^{2}+k x-3$ be factored.
261. What value of k would make $2 k x^{2}-24 x y+9 y^{2}$ a perfect square trinomial?
263.For which integral values of
k can $6 x^{2}+k x+1$ be factored.
a. 5,7
b. $\pm 5, \pm 7$
c. $-5,-7$
d. all integers from 5 to 7.
264.Ms. D is constructing a garden in her backyard. She has not yet determined the overall length and width but she has decided that it will be a perfect square. In the corner of her garden will be a concrete slab that is 3 m by 3 m for composting.

a) Write a simplified expression for the area of garden (excluding the concrete slab).
b) Write expressions for the length and width of the garden plot that will allow her to calculate total area of garden (excluding the concrete slab).

ADDITIONAL MATERIAL

Solving Quadratic Equations:

One of two methods will be used depending on the equation.

Isolating the variable in one place:

Solve.

$$
\begin{aligned}
& x^{2}-25=0 \\
& x^{2}=25 \\
& x=5 \text { or }-5
\end{aligned}
$$

Solve. $\quad 3 x^{2}-12=0$
$3 x^{2}=12$
$x^{2}=4$
$x=2$ or -2

We can only isolate the variable when there are not x terms as well as x^{2} terms.

Solve by factoring with the zero product rule:
With quadratic equations like $x^{2}+7 x+12=0$, we cannot isolate the variable because x and x^{2} cannot be combined.

We must factor the polynomial.
$x^{2}+7 x+12=0 \quad$ Factor.
$(x+3)(x+4)=0 \quad$ Think... what would make the left side equal to 0 .
Use the zero product rule.
If $x=-3$ or $x=-4$, the entire left side would equal 0 .
$x=-3$ or -4

Solve. $2 x^{2}+7 x+6=0$

$$
\begin{aligned}
& (2 x+3)(x+2)=0 \\
& x=-2 \text { or }-\frac{3}{2}
\end{aligned}
$$

Solve the following quadratic equations.

Long Division of Polynomials:

Eg. $1\left(x^{2}+8 x+15\right) \div(x+3)$

$$
x+3 \xlongequal{ } \begin{aligned}
& x^{2}+8 x+15 \\
& x^{2}+3 x
\end{aligned}
$$

$$
\boldsymbol{x}+3 \begin{gathered}
\frac{x}{x^{2}+8 x+15} \\
\frac{x^{2}+3 x}{5 x}+\mathbf{1 5}
\end{gathered}
$$

$$
x + 3 \longdiv { x + \mathbf { 5 } } \longdiv { x ^ { 2 } + 8 x + 1 5 }
$$

$$
x^{2}+3 x
$$

$$
5 x+15
$$

$$
\underline{5 x+15}
$$

$$
0
$$

Divide the first term in the polynomial by the first term in the divisor. Write your answer above the polynomial, then expand to get to your next Step.

Subtract the newly expanded expression from the two terms above it. And bring down the $\mathbf{1 5}$ from above.

Divide the first term in $5 x+15$ by the first term in the divisor $x+3$.
Write your answer (5) above the polynomial, then expand, subtract to get the remainder of 0 .

Remainder is 0 .

This means that $\left(x^{2}+8 x+15\right)=(x+3)(x+5)$
Or $\frac{\left(x^{2}+8 x+15\right)}{(x+3)}=(x+5)+\frac{0}{x+3}$

In the form $P=D Q+R$
In the form $\frac{P}{D}=Q+\frac{R}{D}$

Eg. $2\left(2 x^{2}+7 x+5\right) \div(x+1)$
$x+1) \frac{2 x+5}{2} x^{2}+7 x+5$ $\frac{2 x^{2}+2 x}{5 x+5}$ $\frac{5 x+5}{0}$

Eg. $3\left(6 x^{3}-x^{2}-11 x+9\right) \div(2 x-1)$

$$
2 x-1 \xlongequal{\frac{3 x^{2}+x-5}{6 x^{3}-x^{2}-11 x+9}} \begin{array}{r}
\frac{6 x^{3}-3 x^{2}}{2 x^{2}-11 x} \\
\frac{2 x^{2}-1 x}{-10 x+9} \\
\\
\quad \frac{-10 x+5}{4}
\end{array}
$$

Solution: $\left(6 x^{3}-x^{2}-11 x+9\right)=(2 x-1)\left(3 x^{2}+x-5\right)+4$

Perform the following divisions. Answer in $P=D Q+R$ or $\frac{P}{D}=Q+\frac{R}{D}$ form.

Synthetic Division "Quick \& Efficient Method"

Write Notes Here...

Eg. Divide $\left(x^{3}-4 x^{2}+5 x+1\right) \div(x+1)$.

Coefficients: $1 \begin{array}{lllll}1 & -4 & 5 & 1 & \text { From divisor: }-1\end{array}$

